Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Journal of Polymer Science ; 2023.
Article in English | Web of Science | ID: covidwho-20243199

ABSTRACT

Over the past century, synthetic polymers have had a transformative impact on human life, replacing nature-derived materials in many areas. Yet, despite their many advantages, the structure and function of synthetic polymers still appear rudimentary compared to biological matter: cells use dynamic self-assembly to construct complex materials and operate sophisticated macromolecular devices. The field of DNA nanotechnology has demonstrated that synthetic DNA molecules can be programmed to undergo predictable self-assembly, offering unparalleled control over the formation and dynamic properties of artificial nanostructures. Intriguingly, the principles of DNA nanotechnology can be applied to the engineering of soft programmable materials, bringing the abilities of synthetic polymers closer to their biological counterparts. In this perspective, we discuss the unique features of DNA-functionalized polymer materials. We describe design principles that allow researchers to build complex supramolecular architectures with predictable and dynamically adjustable material properties. Finally, we highlight two key application areas where this biologically inspired material class offers particularly promising opportunities: (1) as dynamic matrices for 3D cell and organoid culture and (2) as smart materials for nucleic acid sequencing and pathogen detection.

2.
International Journal of Applied Pharmaceutics ; 15(3):1-11, 2023.
Article in English | EMBASE | ID: covidwho-20242785

ABSTRACT

Recent advancements in nanotechnology have resulted in improved medicine delivery to the target site. Nanosponges are three-dimensional drug delivery systems that are nanoscale in size and created by cross-linking polymers. The introduction of Nanosponges has been a significant step toward overcoming issues such as drug toxicity, low bioavailability, and predictable medication release. Using a new way of nanotechnology, nanosponges, which are porous with small sponges (below one microm) flowing throughout the body, have demonstrated excellent results in delivering drugs. As a result, they reach the target place, attach to the skin's surface, and slowly release the medicine. Nanosponges can be used to encapsulate a wide range of medicines, including both hydrophilic and lipophilic pharmaceuticals. The medication delivery method using nanosponges is one of the most promising fields in pharmacy. It can be used as a biocatalyst carrier for vaccines, antibodies, enzymes, and proteins to be released. The existing study enlightens on the preparation method, evaluation, and prospective application in a medication delivery system and also focuses on patents filed in the field of nanosponges.Copyright © 2023 The Authors.

3.
Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases ; : 445-464, 2023.
Article in English | Scopus | ID: covidwho-20236164

ABSTRACT

Pulmonary disorders are common illness that affects people of all ages world­wide. Common pulmonary disorders include pulmonary hypertension, CF (cystic fibrosis), asthma, chronic obstructive pulmonary disorder, emphysema, chronic bronchitis, lung cancer, and COVID-19. Treatments of these disorders vary but can be broadly categorized into pharmacological (medicinal), non-pharmacological, rehabilitation, and surgical techniques. Often, a combina­tion of these approaches is used, both for symptomatic relief and treatment. Regarding these prophylactic and therapeutic approaches, advances are rapidly being made, and scientists are currently investigating modern and unique theranostic methods. However, there is a lacuna in drug delivery, pharmacokinetic aspects, and drug-induced adverse effects. One particular area for improvement that needs to be immediately addressed is the drug delivery system to significantly improve healthcare associated with pulmonary disorders. Natural polymer-based drug delivery systems are widely adopted for their ease of production, lack of biotoxicity, and strong bioaffinity. Of the natural polymer­based drug delivery systems, chitosan, sodium alginates, albumin, hydroxyapa­tite, and hyaluronic acid are the most common natural polymers. Each of these natural polymers has its preferred use, either due to tissue-specific delivery or medical property packaging. The current scientific article discusses the common pulmonary disorders, their pathophysiology, and the current therapeutic approaches. Additionally, we discuss the major natural polymer drug delivery systems, including their properties and common uses. © The Author (s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.

4.
Pharmaceutical Technology Europe ; 33(7):29-31, 2021.
Article in English | ProQuest Central | ID: covidwho-20235620

ABSTRACT

Syringe innovations also increase patient and caregiver safety and efficiency and reduce waste of product and packaging materials. "Since it is already packaged ready for the injection, the prefilled syringe saves time and avoids unneeded handling prior to the actual application, minimizing the risk of the injection errors, dilution errors, or non-sterility issues [that are a risk in] multi-dose containers," explains Wenzel Novak, global senior director of business development at Gerresheimer Medical Systems. [...]the advent of a silicone-free design, "Pharmaceutical manufacturers seeking to avoid silicone-induced aggregation and sub-visible particles have had to choose vials even when they wanted to offer other delivery options," said Christiane Gumera, product specialist at W.L. Gore & Associates. [...]automation decreases labour requirements, diminishes the difficulties of working in a cleanroom with full personal protective equipment, and reduces the likelihood of repetitive motion injuries." [...]information technology systems supporting serialization can communicate with the customer's system to ensure that the serial numbers applied are unique and traceable across the network of product manufacturing sites the customer may be using."

5.
Eurasia Journal of Mathematics, Science and Technology Education ; 19(5), 2023.
Article in English | ProQuest Central | ID: covidwho-20231813

ABSTRACT

Online learning should ensure that students' oral communication skills remain good. This study aimed to determine the oral communication skills of chemistry department students in polymer chemistry courses at online learning based on differences in gender and study program. The research design was quantitative descriptive. The data collection tool was an observation sheet about the assessment of oral communication skills collected during presentation activities. The sample was 73 students. Data were analyzed utilizing a one-way analysis of variance test. The findings reveal that students' oral communication skills based on gender have differences, but the difference was not significant. The oral communication skills of male students are higher than female students. There was a significant difference in students' verbal communication skills based on study programs. Chemistry students' oral communication skills have higher than chemistry education students. The implications of the research results are described.

6.
Sensors and Actuators B: Chemical ; : 134007, 2023.
Article in English | ScienceDirect | ID: covidwho-2327965

ABSTRACT

This work describes the design, development, and screening of conducting polymers based molecularly imprinting sensors (MIP) for copper, Zinc superoxide dismutase (SOD1). It is clinically significant for a wide variety of cardiovascular, neurodegenerative, Covid-19, and chronic immune illness. The SOD1 MIP sensors were undertaken by electropolymerization of various monomers on Screen Printed carbon electrode (SPCE) using cyclic voltammetry (CV) to examine the molecular recognition capability. The MIP receptors film binding towards SOD1 was studied by fitting experimental CV data to the Langmuir and Freundlich isotherms. Among the various monomers EDOT (3,4-ethylenedioxythiophene), Py (Pyrrole), and DA (Dopamine), the binding affinity (KL) of the poly(3-amionphenylboronic acid) (P3APBA) imprinted MIP system was considerably higher than the other conducting polymer MIP systems. Based on the above studies, 3APBA was chosen to develop a molecularly imprinted poly(3-aminophenylboronic acid) (MIP3APBA) sensor for sensitive and selective detection of SOD1. This MIP3APBA sensor's behaviour and analytical ability were characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). It showed a lowest detection limit of 0.4 μM and a linear range of 1 μM to 500 μM. Further, this electrochemical MIP3APBA sensor was also used to quantify SOD1 levels in plasma samples.

7.
Macroheterocycles ; 15(4):207-302, 2022.
Article in English | Web of Science | ID: covidwho-2327955

ABSTRACT

This review presents a wide range of tetrapyrrole photosensitizers used for photodynamic therapy (PDT), antimicrobial photodynamic therapy, photoinactivation of pathogens. Methods of synthesis and design of new photosensitizers with greater selectivity of accumulation in tumor tissue and increased photoinduced antitumor activity are considered. The issues of studying the properties of new photosensitizers, their photoactivity, the ability to generate singlet oxygen, and the possibility of using targeted photodynamic therapy in clinical practice are discussed. The review examines the work on PDT by national and foreign researchers.

8.
Ieee Transactions on Electron Devices ; 2023.
Article in English | Web of Science | ID: covidwho-2327611

ABSTRACT

Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.

9.
Journal of Polymer Research ; 30(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2323573

ABSTRACT

Extracorporeal membrane oxygenator (ECMO) is a valuable technology to support people with acute respiratory distress syndrome (ARDS) and is recommended for COVID-19 patients. This study aims to fabricate polymer-based composite membranes coated with ethylcellulose nanoparticles from waste paper and identify the performance of the composite as ECMO candidates. Composite membranes were made from four types of polymers, namely, nylon, PTFE (polytetrafluoroethylene), Pebax® MH-1657, and SBS (poly-(styrene-b-butadiene-b-styrene)). PDMS (polydimethylsiloxane) 1 wt.% and ethylcellulose nanoparticles (3% and 10 wt.%) were used as membrane coatings to increase their hydrophobic properties. The success of cellulose isolation and ethylcellulose synthesis from waste paper was confirmed by the FTIR and XRD analysis. The size of the synthesized ethylcellulose nanoparticles was 32.68 nm. The coating effect on composite membranes was studied by measuring the contact angle, membrane porosity, protein quantification tests, and single gas permeation of O2 and CO2. Based on the protein quantification test, the protein could not pass through the Pebax/PDMS and SBS/PDMS composites coated with 10 wt.% ethylcellulose;this indicated less risk of plasma leakage. The gas permeation test on nylon/PDMS, PTFE/PDMS, and SBS/PDMS composites coated with 10% ethylcellulose resulted high CO2/O2 selectivity, respectively, 2.17, 3.48, and 3.22 as good indication for extracorporeal oxygenation membrane.

10.
Smart and Functional Textiles ; : 721-750, 2023.
Article in English | Scopus | ID: covidwho-2323548

ABSTRACT

The COVID-19 pandemic has provided a great challenge with unprecedented demand for personal protective equipment (PPE) during the initial stages of the outbreak. However, it has also been a tremendous opportunity for the textile industry to innovate within the sphere of PPE as textile products formed the first line of defence against this novel coronavirus giving time to the scientists to develop a vaccine. This chapter provides an overview of the challenges presented by COVID-19 and the key constituent parts of PPE for medical personnel during this time. The construction and features of these items, in addition to the regulations governing these important items of PPE, are discussed. Additionally, the future direction of PPE, particularly with regard to single-use items and the sustainability of PPE supplies, is considered. © © 2023 Walter de Gruyter GmbH, Berlin/Boston. All rights reserved.

11.
Smart and Functional Textiles ; : 1-758, 2023.
Article in English | Scopus | ID: covidwho-2321372

ABSTRACT

Smart and Functional Textiles is an application-oriented book covering a wide range of areas from multifunctional nanofinished textiles, coated and laminated textiles, wearable e-textiles, textile-based sensors and actuators, thermoregulating textiles, to smart medical textiles and stimuli-responsive textiles. It also includes chapters on 3D printed smart textiles, automotive smart textiles, smart textiles in military and defense, as well as functional textiles used in care and diagnosis of Covid-19. • Overview of smart textiles and their multidirectional applications • Materials, processes, advanced techniques, design and performance of smart fabrics • Fundamentals, advancements, current challenges and future perspectives of smart textiles. © 2023 Walter de Gruyter GmbH, Berlin/Boston.

12.
ACS Biomater Sci Eng ; 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-2314152

ABSTRACT

In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.

13.
Oriental Journal of Chemistry ; 38(6):1419-1427, 2022.
Article in English | ProQuest Central | ID: covidwho-2303568

ABSTRACT

The greatest medication encapsulation and distribution options have received substantial research on biodegradable natural polymers. For their potential to act as an effective vehicle for site-specific medication delivery in the body, biodegradable nanoparticles (NPs) are attracting more interest. They provide enhanced biocompatibility, and practical release patterns for a variety of medicines to be used in a number of applications. This article has explored the various applications of these particles, including cancer therapy, implantable device, and antioxidant delivery. However, there is still potential to investigate more biodegradable polymers for cutting-edge biological applications.

14.
Macromolecular Materials and Engineering ; 2023.
Article in English | Scopus | ID: covidwho-2303201

ABSTRACT

Air pollution is one of the major global problems causing around 7 million dead per year. In fact, a connection between infectious disease transmission, including COVID-19, and air pollution has been proved: COVID-19 consequences on human health are found to be more severe in areas characterized by high levels of particulate matter (PM). Therefore, after the COVID-19 pandemic, the production of air filtration devices with high filtration efficiency has gained more and more attention. Herein, a review of the post-COVID-19 pandemic progress in nanofibrous polymeric membranes for air filtration is provided. First, a brief discussion on the different types of filtration mechanism and the key parameters of air filtration is proposed. The materials recently used for the production of nanofibrous filter membranes are presented, distinguishing between non-biodegradable polymeric materials and biodegradable ones. Subsequently, production technique proposed for the fabrication of nanofibrous membranes, i.e., electrospinning and solution blow spinning, are presented aiming to analyze and compare filtration efficiency, pressure drop, reusability and durability of the different polymeric system processed with different techniques. Finally, present challenges and future perspectives of nanofibrous polymeric membranes for air filtration are discussed with a particular emphasis on strategies to produce greener and more performant devices. © 2023 The Authors. Macromolecular Materials and Engineering published by Wiley-VCH GmbH.

15.
International Journal of Green Energy ; 2023.
Article in English | Scopus | ID: covidwho-2299935

ABSTRACT

Pyrolysis of medical waste components combined via a novel systematic combination approach (sequentially binary, ternary, and quaternary copyrolysis) was conducted at 400°C to investigate the synergy between medical waste components in improving chemical characteristics and yields of pyrolytic oil. Pyrolysis of hydrocarbon-polymer-containing materials such as medical gloves and rubber bands produced more than 30% of liquid products with substantial compositions of saturated aliphatic hydrocarbon polymers. On the other hand, moisture- and carbonyl-rich pyrolytic liquid products with low selectivity were obtained from pyrolysis of lignocellulosic biomass waste such as HVS paper (houtvrij schrijfpapier, meaning "writing paper made from wood pulp”) and garden waste. Binary copyrolysis of lignocellulosic biomass and medical gloves exhibited improvement on pyrolytic liquid yield and selectivity toward saturated aliphatic hydrocarbon polymers due to hydrogen donor as the medical glove fraction became dominant. The addition of rubber band to the mixture of HVS paper and medical face masks enhanced the pyrolytic liquid yield. The pyrolysis of the mixture of HVS paper, medical face masks, medical gloves, and either rubber bands or cotton fabrics with mixture ratio of 60:20:10:10 yielded the most optimum pyrolytic liquid yield with significant distribution of alkanes in the pyrolytic liquid products. © 2023 Taylor & Francis Group, LLC.

16.
Protein-Based Biopolymers: From Source to Biomedical Applications ; : 1-40, 2022.
Article in English | Scopus | ID: covidwho-2299913

ABSTRACT

Protein-based biopolymers (PBB) are available in ample amounts with rewarding biocompatibility, biodegradability, processability, and combination possibilities. The pollution-free approach made it a leading material in many fields including food packaging. PBB can be obtained from plants and animals, and also derived from microorganisms. The starting materials used to produce PBB are benign, easily available, cost-effective, and mostly from Agri industrial waste. This introductory chapter of PBB summerized the research on the origin and type of PBB and their applications in food packaging, soil strengthening, protein purification, tissue engineering, surface engineering, recombinant protein polymers, drug delivery, healthcare biomedical, bio-nanocomposites, and coating industries. Films and coatings of PBB have excellent gas barrier properties and satisfactory mechanical properties. Currently, PBB or PBB nanoparticles are used for the production of vaccines which can be used to protect from COVID-19, a global crisis. Also, outline some challenges which can be achieved shortly. © 2023 Elsevier Ltd. All rights reserved.

17.
Chemical Engineering Journal ; 463:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2298968

ABSTRACT

• Pd/ m- Al 2 O 3 -Si catalyst exhibited high efficiency in converting α- amino -ε- caprolactam (α- ACL) to dimethyl-protected cyclic lysine (DMCL). • The lack of Brönsted acid sites on Pd/ m- Al 2 O 3 -Si surface facilitated the formation of DMCL and suppressed undesirable reaction process. • Pd/ m- Al 2 O 3 -Si catalyst with microspherical morphology performed excellent stability and physical strength during the catalytic process. • The nylon‑6 copolymers produced from the as-synthesized DMCL exhibited a great potential in the synthesis of self-cleaning antibacterial materials. Antibacterial monomers are prerequisites for synthesizing antibacterial polymers, especially during the current COVID-19 pandemic. Dimethyl-protected cyclic lysine (DMCL) is a promising functional monomer for nylon-6 based self-cleaning antibacterial polymers. However, the production of DMCL still faces formidable challenges, such as harsh reaction conditions and low catalyst activities. In this study, we developed a Pd/ m -Al 2 O 3 -Si catalyst, which exhibited high efficiency in converting α -amino- ε -caprolactam (α -ACL) to DMCL, affording a yield of as high as 97.1% at 100 °C and 1 MPa H 2. The lack of Brönsted acid sites on the catalyst surface facilitated the formation of DMCL and suppressed undesirable hydrolysis or cracking by-products from the lactam-based reactant. The recycled experiments showed that Pd/ m -Al 2 O 3 -Si performed excellent stability and physical strength with essentially no damage to its microspheres after the reaction. The nylon‑6 copolymers produced from the as-synthesized DMCL exhibited similar structure and thermal stability with pure nylon-6, showing great potential in synthesizing the self-cleaning antibacterial polymers. This work provides a sustainable and efficient method for producing DMCL and other lysine-based antibacterial monomers, showing a great prospect for the utilization of bio-based chemicals in synthesizing functional polymers. [ FROM AUTHOR] Copyright of Chemical Engineering Journal is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

18.
Chemkon - Chemie Konkret ; 30(3):138-139, 2023.
Article in English | Academic Search Complete | ID: covidwho-2296348
19.
Buildings ; 13(4):919, 2023.
Article in English | ProQuest Central | ID: covidwho-2294825

ABSTRACT

Plastic waste causes severe environmental impacts worldwide and threatens the lives of all creatures. In the medical field, most of the equipment, especially personal protective equipment (PPE), is made from single-use plastic. During COVID-19, the usage of PPE has increased, and is disposed of in landfills after being used once. Worldwide, millions of tons of waste syringes are generated from COVID-19 vaccination. A practical alternative to utilizing this waste is recycling it to reinforce building materials. This research introduces an approach to using COVID-19 syringe plastic waste to reinforce building material as composite concrete. Reinforced fiber polymer (FRP) concrete materials were used to mold cylindrical specimens, which underwent mechanical tests for mechanical properties. This study used four compositions with 0%, 5%, 10%, and 15% of FRP to create cylindrical samples for optimum results. Sequential mechanical tests were carried out on the created samples. These specimens were cured for a long period to obtain water absorption capability. After several investigations, the highest tensile and compressive strengths, approximately 2.0 MPa and 10.5 MPa, were found for the 5% FRP composition samples. From the curing test, the lowest water absorbability of around 5% was found for the 5% FRP composition samples.

20.
Polymers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2291212

ABSTRACT

During the initial stages of the COVID-19 pandemic, healthcare facilities experienced severe shortages of personal protective equipment (PPE) and other medical supplies. Employing 3D printing to rapidly fabricate functional parts and equipment was one of the emergency solutions used to tackle these shortages. Using ultraviolet light in the UV-C band (wavelengths of 200 nm to 280 nm) might prove useful in sterilizing 3D printed parts, enabling their reusability. Most polymers, however, degrade under UV-C radiation, so it becomes necessary to determine what 3D printing materials can withstand the conditions found during medical equipment sterilization with UV-C. This paper analyzes the effect of accelerated aging through prolonged exposure to UV-C on the mechanical properties of parts 3D printed from a polycarbonate and acrylonitrile butadiene styrene polymer (ABS-PC). Samples 3D printed using a material extrusion process (MEX) went through a 24-h UV-C exposure aging cycle and then were tested versus a control group for changes in tensile strength, compressive strength and some selected material creep characteristics. Testing showed minimal mechanical property degradation following the irradiation procedure, with tensile strength being statistically the same for irradiated parts as those in the control group. Irradiated parts showed small losses in stiffness (5.2%) and compressive strength (6.5%). Scanning electron microscopy (SEM) was employed in order to assess if any changes occurred in the material structure.

SELECTION OF CITATIONS
SEARCH DETAIL